EconPapers    
Economics at your fingertips  
 

Sulfur migration and conversion during co-combustion of sewage sludge and coal slime

Yanlin Wang, Lei Ye, Yun Chen, Jingkuan Li, Tao Bai, Zhiping Jin and Yan Jin

Renewable Energy, 2024, vol. 237, issue PA

Abstract: Co-combustion is an effective way to achieve high-value utilization of sewage sludge (SS) and coal slime (CS). In this study, thermogravimetric-mass spectrometry and X-ray photoelectron spectroscopy were combined to investigate the morphology and changing law of sulfur in the gas-solid phase. H2S, COS, and SO2 were detected in SS and CS mono-combustion, and the SO2 release from CS was 8.8 times that of SS. During SS combustion, the oxidation of aliphatic-sulfur and thiophene led to a staged increase in sulfone content. Sulfate was generated after 500 °C and decomposed after 700 °C to form SO2. During CS combustion, aliphatic-sulfur was converted to H2S, thiophene was sequentially oxidized to sulfoxide and sulfone, and a part of sulfone and sulfate decomposed to SO2 at high temperature. During co-combustion, the release of H2S was inhibited after the CS ratio reached 50 %, and the release of COS was promoted at different ratios. Co-combustion significantly promoted the sulfur fixation of the inorganic components, which led to the inhibition of SO2 release, and the deviation between the experimental and theoretical values was as high as 91.3 % at a CS ratio of 50 %, as well as the content of sulfate in the solid phase was significantly increased.

Keywords: Sewage sludge; Coal slime; Co-combustion; Sulfur migration; Interaction (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148124017142
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:237:y:2024:i:pa:s0960148124017142

DOI: 10.1016/j.renene.2024.121646

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:237:y:2024:i:pa:s0960148124017142