EconPapers    
Economics at your fingertips  
 

Research on gas-liquid interface parameters related to thermal performance of frost-free evaporator of air source heat pump

Dan Zhou, Yi Zhang, Yuting Wu, Yunfei Wang and Guanmin Zhang

Renewable Energy, 2024, vol. 237, issue PB

Abstract: Direct spray frost-free air source heat pumps (FFASHPs) base on liquid desiccant solutions are a more promising renewable energy technology for developing net-zero emission buildings. In order to improve the thermal performance of the frost-free evaporator, a numerical mode was established based on the penetration theory and the two-film theory to reveal the interfacial heat and mass transfer mechanism of LiCl solution falling film absorption on the air side of the frost-free evaporator. The distribution characteristics of temperature, water vapor concentration, effective diffusion coefficient, morphology, velocity and pressure at the interface under different air Reynolds numbers and temperatures were analyzed. The results show that the distribution uniformity of interface parameters has a greater effect on heat transfer performance than its average value. The critical Reynolds number is 391.0 under the present study, and the distribution uniformity of interface parameters and the intensity of interface fluctuation are improved, and the thermal performance reaches the peak. The COP of FFASHP system can be improved effectively when the frost-free evaporator is operated under the critical condition matching its parameters. The purpose of the study is to provide theoretical support for the performance improvement and efficient operation of frost-free evaporators.

Keywords: Air source heat pump (ASHP); Frost-free evaporator; Interfacial heat and mass transfer; Gas-liquid falling film flow; Thermal performance (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148124017270
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:237:y:2024:i:pb:s0960148124017270

DOI: 10.1016/j.renene.2024.121659

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:237:y:2024:i:pb:s0960148124017270