Comprehensive influence of dimensionless wave velocity and expansion ratio on energy absorption characteristics of variable wavelength traveling wave turbine
Zhifei Cui,
PengCheng Ruan,
Yang Bai and
Diangui Huang
Renewable Energy, 2024, vol. 237, issue PB
Abstract:
Based on the traveling wave motion of fish, this paper introduces a new type of variable wavelength traveling wave turbine that significantly differs from traditional turbine designs in its mechanical structure. By developing a two-dimensional traveling wavy plate model and conducting numerical simulations, this study investigates the relationship between the dimensionless wave velocity, variable wavelength coefficient, and expansion ratio, as well as their combined effects on the energy absorption characteristics of the variable wavelength traveling wave turbine. The results reveal that energy absorption efficiency peaks at an optimal dimensionless wave velocity, which is unaffected by changes in the variable wavelength coefficient. Furthermore, the expansion ratio significantly influences both the dimensionless wave velocity and the variable wavelength coefficient, with an optimal ratio of π∗ = 2.5 achieving 90.42 % efficiency. The energy absorption characteristics of the plate with a larger variable wavelength coefficient are found to be constrained by the expansion ratio. Additional analysis reveals that flow characteristics, such as the pressure distribution, vortex street, and velocity field surrounding the traveling wavy plate, are closely related to its energy absorption performance. These findings provide valuable insights for the design of variable wavelength traveling wave turbine.
Keywords: Variable wavelength traveling wave turbine; Traveling wave motion; Energy absorption efficiency; Expansion ration (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148124017786
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:237:y:2024:i:pb:s0960148124017786
DOI: 10.1016/j.renene.2024.121710
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().