Integrating experimental and machine learning approaches for predictive analysis of photocatalytic hydrogen evolution using Cu/g-C3N4
Bahriyenur Arabacı,
Rezan Bakır,
Ceren Orak and
Aslı Yüksel
Renewable Energy, 2024, vol. 237, issue PB
Abstract:
This study addresses environmental issues like global warming and wastewater generation by exploring waste-to-energy strategies that produce renewable hydrogen and treat wastewater simultaneously. Cu/g-C3N4 is used to evolve hydrogen from sucrose solution and the impact of reaction parameters such as pH (3, 5, and 7), Cu loading (5, 10, and 15 wt%), catalyst amount (0.1, 0.2, and 0.3 g/L), and oxidant (H2O2) concentration (0, 10, and 20 mM) on the evolved hydrogen amount is examined. Characterization study confirmed successful incorporation of Cu without significantly altering g-C3N4 properties. The highest hydrogen production (1979.25 μmol g−1·h−1) is achieved with 0.3 g/L catalyst, 20 mM H2O2, 5 % Cu loading, and pH 3. The experimental study concludes that Cu/g-C3N4 is an effective photocatalyst for renewable hydrogen production. In addition to the experimental investigations, various machine learning (ML) models, including Random Forest, Decision Tree, XGBoost, among others, are employed to analyze the impact of reaction parameters and forecast the quantities of produced hydrogen. Alongside these individual models, an ensemble approach is proposed and utilized. The R2 values of these ML models ranged from 0.9454 to 0.9955, indicating strong predictive performance across the board. Additionally, these models exhibited low error rates, further confirming their reliability in predicting hydrogen evolution.
Keywords: Hydrogen; Cu/g-C3N4; Photocatalysis; Wastewater; Machine learning (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148124018056
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:237:y:2024:i:pb:s0960148124018056
DOI: 10.1016/j.renene.2024.121737
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().