Hydrogen production from energetic poplar and waste sludge by electrohydrogenesis using membraneless microbial electrolysis cells
A. Yagmur Goren,
A. Faruk Kilicaslan,
Ibrahim Dincer and
Ali Khalvati
Renewable Energy, 2024, vol. 237, issue PB
Abstract:
Membraneless microbial electrolysis cells (MECs) are potentially considered to produce biohydrogen (bioH2) in a green manner and simultaneously minimize agricultural and wastewater facility wastes. However, effective, sustainable, and cost-effective system configuration and improvement of operating variables, working at ambient conditions, are needed to make the MEC a sustainable process. Therefore, this study investigates the bioH2 production from poplar leaves and anaerobic sludge mixture by incorporating nanomaterials comprising Al2O3, MgO, and Fe2O3 metal oxides at various dosages. Moreover, the effects of applied cell voltage (0.5–1.5 V) and inoculum amount (20–40 mL) on bioH2 production and organic matter removal performance are evaluated. The maximum bioH2 production value is 417 mL at an applied voltage of 1.5 V with a chemical oxygen demand (COD) removal efficiency of 37.6 % under operating times of 5 min using 40 ml of inoculum. The bioH2 production of the MEC system is reduced with the decrease in inoculum amount. The highest bioH2 production of 828 mL is obtained at improved conditions in the presence of 1 g of Fe2O3 metal oxide. Overall, this study provides the potentiality of simultaneous waste minimization and bioH2 production under ambient conditions that highlight the waste-to-energy pathway for membraneless and green bioelectrochemical process.
Keywords: Energetic poplar; Biomass; Waste sludge; Hydrogen production; Microbial electrolysis cell; Energy (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148124018184
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:237:y:2024:i:pb:s0960148124018184
DOI: 10.1016/j.renene.2024.121750
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().