EconPapers    
Economics at your fingertips  
 

Techno-economic feasibility analysis and optimisation of on/off-grid wind-biogas-CHP hybrid energy system for the electrification of university campus: A case study

Ilter Sahin Aktas

Renewable Energy, 2024, vol. 237, issue PC

Abstract: This paper provides a comprehensive feasibility analysis of a hybrid energy system with different configurations to meet electricity and thermal load demand at the University of Southampton campus. The suggested hybrid energy system (HES) comprises wind turbine, biogas generator, battery, CHP natural gas-generator, thermal load controller, boiler, and converter and is simulated in Homer Pro software. In addition, a comparative analysis between stand-alone and on-grid HES is presented. The results indicate that the grid-connected HES is significantly more cost-effective, with a 45 % reduction in cost of energy (COE) and %15.5 decrease in net present cost (NPC) compared to the off-grid system, which amounts to 0.03359 $/kWh and 467M$, respectively. The grid-connected HES is not only more eco-friendly in terms of greenhouse gas emissions (GHG) and produces 19 % less emissions annually compared to the grid-independent system, but it also effectively achieves a positive return on investment (ROI) of %45 with 2.3 years of payback time. Considering the university's total emissions of 38.56 kT CO2e, the proposed on-grid hybrid system has the potential to lessen GHG emissions by 91.2 %.

Keywords: Excess electricity; Off-shore wind turbine; Thermal load controller; Biogas; Homer pro; Hybrid energy system; Southampton; Waste heat; Sensitivity analysis (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148124018603
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:237:y:2024:i:pc:s0960148124018603

DOI: 10.1016/j.renene.2024.121792

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:237:y:2024:i:pc:s0960148124018603