Theoretical prediction of a high-performance two-dimensional type-II MoSi2N4/As vdW heterostructure for photovoltaic solar cells
Deobrat Singh,
Nabil Khossossi,
Raquel Lizárraga and
Yogesh Sonvane
Renewable Energy, 2024, vol. 237, issue PC
Abstract:
Solar cells are expected to become one of the dominant electricity generation technologies in the coming decades. Developing high-performance absorbers made from thin materials is a promising pathway to improve efficiency and reduce cost, accelerating the widespread adoption of these photovoltaic cells. In the present work, we have systematically investigated the 2D MoSi2N4/Arsenene van der Waals (vdW) heterostructure, which exhibits a type-II band alignment with an indirect band gap semiconductor (1.58 eV), that can effectively separate the photogenerated electron–hole (e−–h+) pairs. Compared to the isolated MoSi2N4 and Arsenene monolayers, the optical absorption strength can be significantly enhanced in MoSi2N4/Arsenene vdW heterostructure (in the order of ∼105 cm−1 in the visible region). The calculated optical absorption gaps are 2.12 eV (Arsenene) and 1.76 eV (MoSi2N4), with excitonic binding energies of 0.05 eV for arsenene and 0.48 eV for MoSi2N4, indicating that both materials can effectively form excitons and separate charges. Moreover, we found a high spectroscopic limited maximum efficiency of 27.27% for the MoSi2N4/Arsenene vdW heterostructure, which is relatively higher compared to previously reported 2D heterostructures. Ab-initio molecular dynamics (AIMD) simulations at 300 K, 600 K, and 900 K were conducted to evaluate the thermal stability of the MoSi2N4/Arsenene heterostructure. Simulations in the presence of water and NO2 at 300 K were also performed to assess its resilience to humidity and pollutants. The results suggest strong stability under harsh environmental conditions. Our findings demonstrate that the 2D MoSi2N4/Arsenene vdW heterostructure is an excellent candidate for both photovoltaic device applications and optoelectronic nanodevices.
Keywords: 2D MoSi2N4/Arsenene vdW heterostructure; Structural stability; Charge transfer mechanism; Optoelectronic properties; Spectroscopic limited maximum efficiency (SLME) (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148124018706
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:237:y:2024:i:pc:s0960148124018706
DOI: 10.1016/j.renene.2024.121802
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().