EconPapers    
Economics at your fingertips  
 

Point-defect-induced electronic polarization to enhance H* generation for removal of bisphenol A

Huajing Zhou, Tiancheng Li, Fawen Zhang, Faze Chen, Zilian Liu, Rongrong Miao, Qingqing Guan, Lingxiang Zhao and Liang He

Renewable Energy, 2024, vol. 237, issue PC

Abstract: Intrinsic point defects in metal core-shell materials can regulate electron redistribution, thereby reducing catalytic energy barriers and enhancing their ORR activity. However, their specific contributions to electron transfer and mass transport pathways remain unclear. In this study, defect-rich hollow OCo@Co3O4 nanoparticles were successfully synthesized using ZIF-67(Co) as a sacrificial template through controlled annealing and internal electric field substitution reactions. High-resolution electron microscopy analysis and density functional theory (DFT) calculations co-revealed the growth mechanism of Co and O vacancies, as well as antisite defects. The formation of oxygen vacancies significantly lowered the energy barrier for Co vacancy formation, playing a crucial bridging role in the development of antisite defects. The electric field polarization induced by Co-O atomic displacement resulted in asymmetric charge distribution, optimizing the adsorption of active hydrogen (H*) and oxygen atoms and facilitating the generation and release of reactive oxygen species (ROS). Electrocatalytic experiments demonstrated that under the combined action of singlet oxygen (1O2) and H*, bisphenol A (BPA) can be efficiently degraded. This study successfully bridges the knowledge gap between atomic defects and advanced electrocatalysis, providing a new perspective and insight for the in-depth analysis of the structure-performance relationship of electrocatalyst materials in the future.

Keywords: Atomic defect; Electric field poling; Structure-activity relationship; Electro; ORR (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148124018822
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:237:y:2024:i:pc:s0960148124018822

DOI: 10.1016/j.renene.2024.121814

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:237:y:2024:i:pc:s0960148124018822