EconPapers    
Economics at your fingertips  
 

Data-centric predictive control with tuna swarm optimization-backpropagation neural networks for enhanced wind turbine performance

Wei Li and Ravi Kumar Pandit

Renewable Energy, 2024, vol. 237, issue PC

Abstract: Wind energy is a significant renewable resource, but its efficient harnessing requires advanced control systems. This study presents a Data-Centric Predictive Control (DPC) system, enhanced by a Tuna Swarm Optimization-Backpropagation Neural Network (TSO-BPNN) for predictive wind turbine control. It's like a smart tool that uses innovative fusion of deep learning, predictive Control, and reinforcement learning. Unlike traditional control methods, the proposed approach uses real-time data to optimize turbine performance in response to fluctuating wind conditions.

Keywords: Deep neural networks; TSO-BPNN; Model predictive control; Reinforcement learning; Wind turbine control (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148124018895
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:237:y:2024:i:pc:s0960148124018895

DOI: 10.1016/j.renene.2024.121821

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:237:y:2024:i:pc:s0960148124018895