New approach to agro-industrial solid and liquid waste management: Performance of an EGSB reactor at different hydraulic retention times for methane production
Caroline Varella Rodrigues,
Leonardo Matias de Oliveira Filho,
Franciele Pereira Camargo,
Henrique de Souza Dornelles,
Isabel Kimiko Sakamoto,
Sandra Imaculada Maintinguer,
Edson Luiz Silva and
Maria Bernadete Amâncio Varesche
Renewable Energy, 2024, vol. 237, issue PC
Abstract:
This study investigated the removal of agro-industrial wastes (5 g COD L⁻1 from coffee and 0.5 g COD L⁻1 from brewery wastewater, plus 1 g L⁻1 of coffee pulp and husk) in a continuous Expanded Granular Sludge Bed (EGSB) reactor at 35 °C. The effect of Hydraulic Retention Times (HRTs) of 72h, 48h, and 24h on CH₄ yield was examined using a mixed culture of cattle manure and granular sludge. Methane yields were 201, 124.5, and 113.8 mL CH₄ g⁻1 COD for the 1st, 2nd, and 3rd phases, respectively. Volatile fatty acids, particularly acetic acid, increased at lower HRTs. Sequencing of the 16S rRNA gene on the Illumina HiSeq platform revealed a syntrophic relationship between Syntrophorhabdus, Syntrophobacter, and Pseudomonas with methanogens Methanomassiliicoccus, Methanospirillum, and Methanobacterium, aiding in the removal of phenolic compounds. The study suggests that an HRT of 72h is optimal for maximizing CH₄ production in the EGSB reactor.
Keywords: Biomethane; Expanded granular sludge bed; Metagenomic; Methanosaeta; Organic loading rate; Paludibacter (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148124018901
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:237:y:2024:i:pc:s0960148124018901
DOI: 10.1016/j.renene.2024.121822
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().