Numerical study on efficiency and applicability of prefabricated modular ground heat exchangers in shallow depth
Hobyung Chae and
Yujin Nam
Renewable Energy, 2024, vol. 237, issue PD
Abstract:
This study developed and validated a CFD model to evaluate the performance of modular ground heat exchangers (GHEs) compared to vertical closed-loop GHEs. The reliability of the model was confirmed through comparison with field experiment data, with RMSE values of 0.35 °C and 0.27 °C for inlet and outlet temperatures, respectively. Additionally, the performance of modular GHEs installed at shallow depths was evaluated under various external environmental conditions, revealing a temperature difference of approximately 7 °C between the intermediate and cooling periods. A comparison of the performance of modular and vertical GHEs of the same heat exchanger length showed that, when a constant heat load of 2 kW was maintained for 100 h, the temperature in the vertical GHE increased to 32.8 °C, while the modular GHE reached 38.5 °C. Despite the high thermal conductivity resulting from ground heat storage effects, the modular GHE exhibited a greater temperature increase due to its shallow installation depth compared to the vertical GHE. On the other hand, as the thermal conductivity of the ground decreased, the temperature difference between the two systems also decreased. These results suggest that modular GHEs can be a cost-effective and efficient solution, particularly in regions with low ground thermal conductivity.
Keywords: Modular ground heat exchangers; Prefabrication technology; Ground source heat pump system; Performance analysis (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148124019256
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:237:y:2024:i:pd:s0960148124019256
DOI: 10.1016/j.renene.2024.121857
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().