Optimum carbon tax rate for emission targets of electricity generation system by life cycle techno-economic-environmental optimization model
Ashkan Shahbazi,
Akram Avami,
Moein Moeini-Aghtaie and
Hamidreza Tavassoti
Renewable Energy, 2024, vol. 237, issue PD
Abstract:
Reduction of greenhouse gas emissions from the electricity sector is of special interest for decarbonization of energy systems. Optimum carbon tax as a powerful policy tool is here studied by integrated techno-economic-environmental life cycle analysis in a unit commitment problem. The present model is formulated as a bi-level optimization problem to reach the optimum carbon tax rates for different emission targets. The total life cycle CO2 emissions are estimated to be 20333.90 tons/hr in a real case study of Iran's electricity sector for the peak demand hour. The carbon tax rate for a 2 % and a 3 % emissions reduction is equal to 15.87 and 24.65 $/ton, respectively. In the business-as-usual scenario, higher carbon taxes will be required each year to meet the same emission target. However, developing the electricity sector with cleaner technologies and strategic plans may decrease the carbon tax rate. The extent of this reduction depends on the type of development program implemented in the green revolution scenario. Therefore, policy makers play a direct role in ensuring the sustainable development of the electricity sector. The present model provides a robust framework to analyze the real carbon tax rates for the whole life cycle of electricity generation dispatch.
Keywords: Emission targets; Carbon tax; Greenhouse gas emissions; Life cycle analysis; Electricity generation (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148124019451
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:237:y:2024:i:pd:s0960148124019451
DOI: 10.1016/j.renene.2024.121877
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().