Performance of cross-flow turbines with varying blade materials and unsupported blade span
Nicole Marone,
Matthew Barrington,
Budi Gunawan,
Jarlath McEntee and
Martin Wosnik
Renewable Energy, 2025, vol. 238, issue C
Abstract:
Cross-flow turbines could play a larger role in the diversification of the global energy supply if the impact of more cost-competitive design choices on performance and rotor dynamics was better understood. This study focuses on rotor performance and blade strain measurements while varying the following parameters: blade materials and blade free end length by changing strut support position. Towing tank experiments were performed with a modular 1-meter diameter cross-flow turbine consisting of three NACA 0018 blades with two support struts. One strut was fixed at the lower end of the turbine, while the second strut was adjustable, thereby changing the length of the free end. The blade materials tested were carbon, E-glass, and hollow E-glass fiber composites, in decreasing order of stiffness and cost. High-resolution distributed fiber optic sensors were embedded in two of the three rotor blades for each material and provided hundreds of strain measurements per blade. Turbine performance and blade strain were measured while varying tow speed and tip speed ratio. Performance tests were conducted at towing speeds sufficiently high for the performance to be independent of Reynolds number. E-glass blades and carbon blades performed similarly for the most rigid strut configurations. Higher strain was measured on the E-glass blades, and their performance was reduced for less rigid configurations compared to the carbon fiber blades. The performance of the highly deflective hollow E-glass blades was lower overall and became even more degraded for longer unsupported blade span. The results provide insight into the use of various blade materials in cross-flow turbines and guidance on allowable free end length for each material type.
Keywords: Marine energy; Cross-flow turbine; Blade materials; Composites; Turbine performance; Tow tank testing (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148124019931
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:238:y:2025:i:c:s0960148124019931
DOI: 10.1016/j.renene.2024.121925
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().