Quantitative impact of combining blowing and suction flow control on a floating offshore wind turbine aerodynamic performance under the surge motion
Yukun Sun,
Yaoru Qian,
Tongguang Wang,
Long Wang,
Chengyong Zhu and
Yang Gao
Renewable Energy, 2025, vol. 238, issue C
Abstract:
The dynamic stall induced by platform surge motion significantly reduces the output power of a floating wind turbine and shortens the machine's operational lifespan. This work examines the impact of a D-SFJ active flow control, featuring two suction slots on the suction side and two injection slots near the trailing edge on the pressure side, on the aerodynamic performance of the NREL 5 MW reference wind turbine during surge motion. Numerical simulations are conducted using the Unsteady Reynolds-Averaged Navier-Stokes (URANS) method with the shear stress transport (SST) k-ω turbulence model and the overset mesh technique is performed. The findings confirm that the surge motion dynamically enlarges the flow separation region over the blade surface, with a maximum increase of 164.29 % in comparison to the wind turbine in a fixed state. The control device implemented in the entire rotor can enhance the aerodynamic performance and improve the flow pattern throughout a single surge cycle. For instance, at an inflow of 7 m/s and a jet strength of 0.01, the D-SFJ device yields a 4.82 % increase in average net output power and the separation area can be reduced by 54.68% compared to the baseline rotor.
Keywords: Floating wind turbine; Surge motion; Active control; Blowing and suction; Aerodynamic performance (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148124020135
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:238:y:2025:i:c:s0960148124020135
DOI: 10.1016/j.renene.2024.121945
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().