EconPapers    
Economics at your fingertips  
 

Optimal self-consumption scheduling of highway electric vehicle charging station based on multi-agent deep reinforcement learning

Jianshu Zhou, Yue Xiang, Xin Zhang, Zhou Sun, Xuefei Liu and Junyong Liu

Renewable Energy, 2025, vol. 238, issue C

Abstract: Due to the randomness of renewable energy and electric vehicles (EVs) in highway charging stations, it is difficult to ensure the consistency of renewable energy supply and EVs demand. Considering the randomness of EVs charging and renewable energy power generation, an optimal self-consumption scheduling of a highway EV charging station based on multi-agent deep reinforcement learning (MADRL) is proposed to realize the economy, self-consumption, low-carbon operation and ensure reliability of power supply. In day-ahead, the traffic flow prediction model based on the CNN-BiLSTM and the queuing model based on user psychology are built to predict the charging load. The 24-h optimal charging price is obtained by solving the incentive price optimization model and guides the orderly charging of EVs. In intra-day, considering the prediction errors of day-ahead and the diversity of charging levels, an optimal scheduling based on the MADRL is proposed. Regarding the multi-objective scheduling of the highway charging station, the multi-objective nonlinear and non-convex problem is transformed into multi-agent Markov game model. Finally, the effectiveness and optimality of the proposed method are verified on a highway charging station The results show that the proposed method can realize the economy, self-consumption and low-carbon operation of the charging station.

Keywords: Highway EV charging station; Day-ahead and intra-day optimization; Traffic flow prediction; Multi-agent deep reinforcement learning; Self-consumption (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148124020500
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:238:y:2025:i:c:s0960148124020500

DOI: 10.1016/j.renene.2024.121982

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-05-25
Handle: RePEc:eee:renene:v:238:y:2025:i:c:s0960148124020500