A new approach to analyse from monitored data the performance, matching capability and grid usage of large Rooftop Photovoltaic systems. Case of study: Photovoltaic system of 1.05 MW installed at the campus of University of Jaén
F.J. Muñoz-Rodríguez,
P. Gómez,
J.I. Fernández-Carrasco,
G.M. Tina and
G. Jiménez-Castillo
Renewable Energy, 2025, vol. 239, issue C
Abstract:
Rooftop photovoltaic installations highlight their potential to meet a significant portion of urban electricity demand. These systems range from a few kW in residential areas to hundreds of kW in large Rooftop PV systems in commercial and industrial settings. The latter, which may include several inverters or arrays with different orientations and inclinations, require a proper analysis to assess the potential of this technology and to ensure the design objectives. This paper presents a methodology for analysing from monitored data large Rooftop PV systems, focusing on performance, self-consumption and grid usage. The approach is scalable, applicable at the inverter, individual Rooftop PV and global system levels. New key parameters defined include weighted system irradiation (HI,weighted) and weighted system reference yield (Yr,weighted), which account for different array orientations and inclinations. The methodology is validated using a 1.05 MW system at the University of Jaén with monitored data over a year. Results indicate subsystem and system PR values above 0.83 and a system Capacity Factor of 0.19, confirming a proper performance. Annual self-consumption and self-sufficiency indices of 97.5 % and 17.7 %, respectively, and a solar hour self-sufficiency of 27.7 % reveal minimal energy export and substantial potential to meet the university’s electricity demand.
Keywords: Rooftop PV; Performance analysis; Monitoring; Renewable energy communities (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148124020159
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:239:y:2025:i:c:s0960148124020159
DOI: 10.1016/j.renene.2024.121947
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().