EconPapers    
Economics at your fingertips  
 

Predicting photovoltaic greenhouse irradiance at low-latitudes of plateau based on ultra-short-term time series

Yinlong Zhu, Guoliang Li, Yonglei Jiang, Ming Li, Yunfeng Wang, Ying Zhang, Yali Liu and Muchi Yao

Renewable Energy, 2025, vol. 239, issue C

Abstract: Accurate and reliable ultra-short-term prediction of solar irradiance in photovoltaic (PV) greenhouses at low-latitude plateau is essential to precisely control electricity consumption of greenhouse equipment and ensure high quality crop yields. However, the irradiance in the low-latitude plateau has problems such as poor data quality, limited short-term prediction accuracy, and insufficient ability to capture nonlinear characteristics. Therefore, in order to achieve efficient utilization of photovoltaic resources, this study proposed a new hybrid integrated model TTAO-CNN-BiGRU-Attention framework to predict ultra-short-term photovoltaic greenhouse irradiance in the region. Monthly and seasonal characteristics of irradiance in low-latitude plateau areas were analyzed by statistical methods. The performance of the proposed model was verified using 9 different models for 5 different data volumes and 4 different seasons. Comprehensive analysis results show that Total radiant instantaneous (TRI) demonstrates a seasonal trend, generally low in spring, high in summer and autumn, relatively stable in autumn and winter. The monthly trend initially increases and then decreases, reaching the highest value of the year in September. The scheme proposed in this paper makes full use of the advantages of CNN, BiGRU, Attention and TTAO, greatly improving the comprehensive prediction ability of the model. In predicting different data amounts, 1 year prediction performance was the best, with RMSE, MAE, MAPE and R2 reaching 70.61 W/m2, 31 W/m2, 9.3 % and 95.84 %, respectively. With regard to different seasons, autumn prediction performance was the best, with RMSE, MAE, MAPE and R2 reaching 66.27 W/m2, 31.02 W/m2, 8.37 % and 95.87 %, respectively. The TRI prediction curve of the proposed model was closer to the actual value than other comparison models. The study found that the TTAO-CNN-BiGRU-Attention model is more accurate and stable than many traditional models in predicting ultra-short-term TRI in low-latitude plateau photovoltaic greenhouses, which can provide a reference for the comprehensive performance of PV greenhouse irradiance prediction models and precise regulation of energy supply in the future.

Keywords: Ultra-short-term time series; Photovoltaic greenhouse irradiance prediction; Plateau low latitude; Hybrid integration model; TTAO optimization; SDPA attention mechanism (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148124021219
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:239:y:2025:i:c:s0960148124021219

DOI: 10.1016/j.renene.2024.122053

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:239:y:2025:i:c:s0960148124021219