Large eddy simulation of a utility-scale horizontal axis turbine with woody debris accumulation under live bed conditions
Mustafa Meriç Aksen,
Hossein Seyedzadeh,
Mehrshad Gholami Anjiraki,
Jonathan Craig,
Kevin Flora,
Christian Santoni,
Fotis Sotiropoulos and
Ali Khosronejad
Renewable Energy, 2025, vol. 239, issue C
Abstract:
Tidal and riverine flows are viable energy sources for consistent energy production. Installing and operating marine hydrokinetic (MHK) turbines requires assessing any potential impact of debris accumulation on turbine performance and sediment transport. More specifically, MHK devices may alter the natural sediment transport processes and cause debris accumulation, disrupting the natural sediment dynamic. In turn, these processes could affect the turbine’s performance. We carried out a series of large-eddy simulations coupled with bed morphodynamics, introducing various debris loads lodged on the upstream face of a utility-scale turbine tower. The objective is to systematically investigate the impact of debris accumulation on the performance and hydro- and morpho-dynamics interactions of the horizontal-axis MHK turbine under rigid and live bed conditions. To that end, we (1) employed the actuator line and surface methods for modeling turbine blades and the nacelle, respectively, (2) directly resolved individual logs, and (3) solved the Exner equation to obtain the instantaneous bed deformation of the live bed. Our analysis revealed that while the spinning rotor amplifies scour around the pile, debris accumulation modifies the sediment dynamics of the system. Also, it found that morphodynamic processes accelerate the wake recovery, slightly enhancing the turbine’s performance.
Keywords: Large-eddy simulation; Marine hydrokinetic turbine; Sediment transport; Actuator model; Debris accumulation (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148124021785
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:239:y:2025:i:c:s0960148124021785
DOI: 10.1016/j.renene.2024.122110
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().