Part-load based optimization of solar ejector cooling cycle
Konstantinos Braimakis,
Angeliki Kitsopoulou,
Tryfon C. Roumpedakis,
George M. Stavrakakis and
Christos Tzivanidis
Renewable Energy, 2025, vol. 243, issue C
Abstract:
The thermodynamic and economic performance of a solar ejector cooling cycle (SECC) driven by flat plate collectors is investigated considering its part-load behavior. An SECC operating with R1234ze(E) is optimized for different collector areas from 50 to 150 m2 and specific storage tank volumes from 50 lt/m2 to 150 lt/m2 per collector area, considering climate data of four cities (Athens, Madrid, Nicosia and Rome) to maximize seasonal cooling according to partial and full day cooling schedules. The ECC optimization variables are the nominal heat transfer fluid (HTF) temperature at the generator inlet and cooling fluid temperature at the condenser/subcooler inlet. Optimal HTF and cooling fluid temperatures are 86–87 °C and 30–33 °C, respectively, showing minor variation for different conditions. The produced cooling is lowest in Nicosia (4–24 kWhc/m2) and highest in Madrid and Athens (17–45 kWhc and 12–38 kWhc/m2), with significantly improved performance under full day cooling schedule. Higher specific tank volumes result in slight and significant increase in cooling production under the partial and full day cooling schedules, respectively. According to techno-economic results, the investigated SECC is a non-viable solar thermal cooling option because of its poor solar cooling conversion efficiency.
Keywords: Ejector cooling; Solar cooling; Building; Solar collectors; Annual simulations (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148125002447
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:243:y:2025:i:c:s0960148125002447
DOI: 10.1016/j.renene.2025.122582
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().