EconPapers    
Economics at your fingertips  
 

Optical performance investigation for a parabolic trough collector equipped with an innovative flat tube receiver

Mohammed K. Saadeldin, S.Z. Shuja and Syed M. Zubair

Renewable Energy, 2025, vol. 246, issue C

Abstract: This study examines the optical performance of a parabolic trough solar collector (PTC) system with an innovative flat tube receiver, analyzed using Monte Carlo Ray Tracing (MCRT) simulations in SolTrace. The transition from a circular to a flat tube geometry was achieved by stretching the circular cross-section while maintaining a constant area. Results indicate that horizontal flat tubes significantly improve optical efficiency, with gains of up to 21.93 % for smaller diameters (10–20 mm), though at the cost of increased flux non-uniformity. For a 70 mm base diameter, efficiency improved by 0.52 % at a 1.6 stretching ratio, with a 7.8 % rise in non-uniformity. In contrast, vertical flat tubes slightly reduced efficiency (by 0.56 %) but enhanced flux uniformity, lowering non-uniformity by 11.88 %. These findings provide key insights into the trade-offs between efficiency and flux uniformity, supporting the optimization of PTC receiver designs for advanced solar energy applications.

Keywords: Parabolic trough solar collector; Flat tube receiver; Optical performance; Receiver geometry; Monte Carlo ray tracing (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148125005221
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:246:y:2025:i:c:s0960148125005221

DOI: 10.1016/j.renene.2025.122860

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-05-06
Handle: RePEc:eee:renene:v:246:y:2025:i:c:s0960148125005221