EconPapers    
Economics at your fingertips  
 

Photovoltaic power prediction based on multi-scale photovoltaic power fluctuation characteristics and multi-channel LSTM prediction models

Fengpeng Sun, Longhao Li, Dunxin Bian, Wenlin Bian, Qinghong Wang and Shuang Wang

Renewable Energy, 2025, vol. 246, issue C

Abstract: The global shortage of non-renewable energy sources has catalyzed the vigorous development of photovoltaic (PV) energy. Accurate prediction of PV power output is essential for ensuring the safety and stability of integrating small-scale PV systems into the power grid. Therefore, this paper proposes a hybrid multi-station parallel PV power prediction method (MCFC-MAOA-MCLSTM-Attention) based on multi-scale historical PV power fluctuation feature extraction. First, for the problem of variable weather types due to the existence of strong fluctuations in meteorological factors, a weather classification algorithm based on multi-scale fluctuation characteristics (MCFC) is proposed, and combined with the similar day algorithm to select the classified meteorological data secondly and improve the correlation between the data. Subsequently, this paper proposes a multi-channel structured long and short-term neural network modeling method (MCLSTM) to further extract the spatio-temporal correlation of different PV sites in the region and realize the integrated prediction based on geographic location and time series. To address the challenges associated with calibrating model parameters, which significantly impact the prediction accuracy, the modified Archimedean optimization approach (MAOA) was employed to optimize these parameters. The experimental results demonstrate that the model is both highly reliable and generalizable for predicting photovoltaic power data.

Keywords: Solar photovoltaic power forecast; Artificial neural network; PV power fluctuations; Spatio-temporal correlation, MCLSTM (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148125005282
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:246:y:2025:i:c:s0960148125005282

DOI: 10.1016/j.renene.2025.122866

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-05-06
Handle: RePEc:eee:renene:v:246:y:2025:i:c:s0960148125005282