Activating reaction intermediates in steam reforming with microwave heating for suppressing coke formation
Yunyu Guo,
Yuchen Jiang,
Lihua Wang,
Linghui Kong,
Chao Li,
Yangfan Zhang,
Shu Zhang and
Xun Hu
Renewable Energy, 2025, vol. 247, issue C
Abstract:
Microwave heating in steam reforming (SR) could selectively agitate reaction intermediates with polar functionalities including precursors of coke, which might affect tendency of coking and properties of coke. This was verified here by conducting SR of acetic acid, glycerol, toluene, and guaiacol with microwave heating and furnace heating at 300–600 °C with Ni/Mg-Al-LDH as a catalyst. The results showed that microwave heating promoted catalytic activity via enhancing mobilizing reaction intermediates and their collision/reactions. This accelerated gasification of carbonaceous intermediates with steam, forming less coke in SR of all the reactants. Specifically, coke from SR of toluene with microwave heating was only ca. 65 % of that from furnace heating, while the ratio of coke formed from microwave heating to furnace heating in SR of guaiacol even reached ca. 54 %. Enhanced gasification of carbonaceous species with microwave heating also formed aliphatic structures in coke. Generally, the coke from microwave heating was very aromatic with significantly higher C/H ratio and more disordered structures than that from furnace heating. Enhanced aromatization of reaction intermediates to carbon nanotubes was observed in SR of acetic acid with microwave heating, while the coke from furnace heating was highly amorphous. Abundant hydrocarbon intermediates from toluene and oxygen-rich intermediates from glycerol or guaiacol formed nanotube-form coke of smooth or rough surfaces.
Keywords: Steam reforming; Microwave heating; Coke formation; Acetic acid and glycerol; Toluene and guaiacol (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148125006925
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:247:y:2025:i:c:s0960148125006925
DOI: 10.1016/j.renene.2025.123030
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().