EconPapers    
Economics at your fingertips  
 

EOLD: A reinforcement learning-based energy-optimised load disaggregation framework for demand-side energy management

Ying'an Wei, Jingjing Fan, Qinglong Meng, Kumar Biswajit Debnath, Yuqin Yang, Jiao Liu and Yu Lei

Renewable Energy, 2025, vol. 252, issue C

Abstract: Demand-Side energy Management (DSM) is a crucial strategy for balancing electricity supply and demand while enhancing energy efficiency, relying on sufficient data on electricity usage. Non-Intrusive Load Monitoring (NILM) is widely used for DSM strategies, as it effectively identifies the energy consumption of individual devices by measuring total power, significantly enhancing visibility. NILM should prioritise the dynamics of sub-load characteristics under future energy optimisation strategies rather than just historical data. For efficient load disaggregation, it must focus on optimising energy strategies. This study introduces a Reinforcement Learning-based Energy-Optimised Load Disaggregation (EOLD) framework to address this gap. The framework uses load disaggregation for final energy optimisation rather than initial sub-load characteristics. It utilises Reinforcement Learning (RL) to tackle the load disaggregation, with rewards focused on efficient, flexible, or economic energy goals. The Proximal Policy Optimisation (PPO) effectively disaggregates the air-conditioning load of three buildings, demonstrating the capabilities of the EOLD framework in optimising DSM for energy storage systems. The results show the proposed method optimises power curve flattening. It establishes a precise relationship between the main system's design power and the energy storage system's capacity. The framework can also be extended to disaggregate other flexible loads, such as photovoltaics and electric vehicles.

Keywords: Load disaggregation; Reinforcement learning; Demand-side energy management; Energy optimisation; Energy storage (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096014812501198X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:252:y:2025:i:c:s096014812501198x

DOI: 10.1016/j.renene.2025.123536

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-09-26
Handle: RePEc:eee:renene:v:252:y:2025:i:c:s096014812501198x