A new approach for predicting vertical global solar irradiance
Danny H.W. Li,
Joseph C. Lam and
Chris C.S. Lau
Renewable Energy, 2002, vol. 25, issue 4, 591-606
Abstract:
Solar irradiance, particularly on vertical surfaces, plays a major role in determining the thermal and energy performance of a building. It is important to the design and analysis of both active solar systems and passive solar buildings. Many mathematical models are mainly developed to predict the sky-diffuse irradiance on inclined surfaces from the measured horizontal diffuse component. This paper presents an approach to estimate the vertical global irradiance based on direct beam and ground-reflected components which can be accurately determined. Hourly data recorded from January 1996 to December 1998 in Hong Kong were used for the model development. The performance of the proposed model and two well-known anisotropic inclined surface models (Muneer and Perez) was evaluated against data measured in 1999. Statistical analysis indicated that the proposed model gives reasonably good agreement with measured data for all vertical planes. Although the new model has been found less effective than the Perez model, its simplicity nature provides buildings designers a convenient and reliable alternative in the estimation of vertical solar irradiance.
Keywords: Solar radiation; Outdoor illuminance; Anisotropy; Sunlit surfaces; Shaded surfaces; Clearness index (search for similar items in EconPapers)
Date: 2002
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148101000957
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:25:y:2002:i:4:p:591-606
DOI: 10.1016/S0960-1481(01)00095-7
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().