EconPapers    
Economics at your fingertips  
 

Numerical analysis of two dimensional parallel flow flat-plate solar collector

H. Kazeminejad

Renewable Energy, 2002, vol. 26, issue 2, 309-323

Abstract: Temperature distribution over the absorber plate of a parallel flow flat-plate solar collector is analyzed with one- and two-dimensional steady-state conduction equations with heat generations. The governing differential equations with boundary conditions are solved numerically using a control volume-based finite difference scheme. Comparisons of one- and two-dimensional results showed that the isotherms and performance curve, stated in terms of an effectiveness/number-of-transfer-unit relationship, for one-dimensional analysis slightly deviate from that of two-dimensional analysis, particularly under low mass flow rate conditions. In addition, collector efficiency as a function of operating point is computed and presented graphically for different collector configuration and various operating conditions. For general engineering purposes, these performance curves may be used for efficient and optimum design of liquid flat-plate solar collectors.

Date: 2002
References: View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148101001215
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:26:y:2002:i:2:p:309-323

DOI: 10.1016/S0960-1481(01)00121-5

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:26:y:2002:i:2:p:309-323