Investigation of a novel combined cycle of solar powered adsorption–ejection refrigeration system
C.H. Li,
R.Z. Wang and
Y.Z. Lu
Renewable Energy, 2002, vol. 26, issue 4, 611-622
Abstract:
A novel model of the combined cycle of a solar-powered adsorption–ejection refrigeration system (CCSPAERS) is established. By analyzing the theory of this system and its thermodynamics, together with numerical simulation, it is found that it is a feasible method to overcome the intermittent character of a single bed solar adsorption refrigeration system. The estimated coefficient of performance for this combined cycle is about 0.4 under the following operating conditions: condensing temperature 313 K, evaporating temperature 283 K, regenerating temperature 393 K and desorbing temperature 473 K, using zeolite 13X–water as the pair. The higher desorbing temperature can be obtained when a vacuumed tube adsorber or a CPC adsorber is used.
Keywords: Adsorption; Ejection; Refrigeration; Thermodynamics; Zeolite (search for similar items in EconPapers)
Date: 2002
References: View complete reference list from CitEc
Citations: View citations in EconPapers (14)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148101001082
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:26:y:2002:i:4:p:611-622
DOI: 10.1016/S0960-1481(01)00108-2
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().