EconPapers    
Economics at your fingertips  
 

A ventilated courtyard as a passive cooling strategy in the warm humid tropics

I. Rajapaksha, H. Nagai and M. Okumiya

Renewable Energy, 2003, vol. 28, issue 11, 1755-1778

Abstract: The paper investigates the potential of a courtyard for passive cooling in a single storey high mass building in a warm humid climate. The inclusion of an internal courtyard in building design is attributed to the optimization of natural ventilation in order to minimize indoor overheating conditions. However, the efficiency of this strategy greatly depends on the design details of the building composition in providing appropriate airflow pattern to the courtyard. From the results of thermal measurements, a significant correlation between wall surface temperatures and indoor air temperatures is evident. A reduction of indoor air temperature below the levels of ambient is seen as a function of heat exchange between the indoor air and high thermal mass of the building fabric. However, this behavior is affected by indoor airflow patterns, which are controlled through the composition between envelope openings and the courtyard of the building.

Keywords: Airflow pattern; Opening composition; Passive cooling; Tropical courtyard; Warm humid climate (search for similar items in EconPapers)
Date: 2003
References: View complete reference list from CitEc
Citations: View citations in EconPapers (12)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148103000120
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:28:y:2003:i:11:p:1755-1778

DOI: 10.1016/S0960-1481(03)00012-0

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:28:y:2003:i:11:p:1755-1778