A practical approach for selecting optimum wind rotors
K.Y. Maalawi and
M.a Badr
Renewable Energy, 2003, vol. 28, issue 5, 803-822
Abstract:
The main objective of this paper is to categorize practical families of horizontal-axis wind turbine rotors, which are optimized to produce the largest possible power output. Refined blade geometry is obtained from the best approximation of the calculated theoretical optimum chord and twist distributions of the rotating blade. The mathematical formulation is based on dimensionless quantities so as to make the aerodynamic analysis valid for any arbitrary turbine models having different rotor sizes and operating at different wind regimes. The selected design parameters include the number of blades, type of airfoil section and the blade root offset from hub center. The effects of wind shear as well as tower shadow are also examined. A computer program has been developed to automate the overall analysis procedures, and several numerical examples are given showing the variation of the power and thrust coefficients with the design tip speed ratio for various rotor configurations.
Date: 2003
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (18)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148102000289
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:28:y:2003:i:5:p:803-822
DOI: 10.1016/S0960-1481(02)00028-9
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().