EconPapers    
Economics at your fingertips  
 

An on-line MPPT algorithm for rapidly changing illuminations of solar arrays

C. Hua and J. Lin

Renewable Energy, 2003, vol. 28, issue 7, 1129-1142

Abstract: Maximum power point tracking (MPPT) is usually used for a solar power system. Many maximum power tracking techniques have been considered in the past. The microprocessors with appropriate MPPT algorithms are favored because of their flexibility and compatibility with different solar arrays. Although the efficiency of MPPT algorithms is usually high, it drops noticeably in case of rapidly changing illumination conditions. The authors have proposed an improved MPPT algorithm based on the fact that the maximum power point (MPP) of solar arrays can be tracked accurately. The principle of energy conservation is used to develop the large- and small-signal model and transfer function for the solar power system. The work was carried out by both simulation and experiment on a current converter, by the digital signal processor (DSP) control, in MPPT mode under different illuminations. The results show that the proposed MPPT algorithm has successfully tracked the MPP in rapidly changing illumination conditions.

Keywords: Maximum power point tracking; Solar arrays; Digital signal processor; Principle of energy conservation (search for similar items in EconPapers)
Date: 2003
References: View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148102002148
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:28:y:2003:i:7:p:1129-1142

DOI: 10.1016/S0960-1481(02)00214-8

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:28:y:2003:i:7:p:1129-1142