Aquifer thermal storage (ATES) for air-conditioning of a supermarket in Turkey
H.O. Paksoy,
Z. Gürbüz,
B. Turgut,
D. Dikici and
H. Evliya
Renewable Energy, 2004, vol. 29, issue 12, 1991-1996
Abstract:
A heating, ventilation and air-conditioning (HVAC) system with integrated aquifer thermal energy storage (ATES) was designed for a supermarket building in Mersin, a city near the Mediterranean coast in Turkey (36° 49′ N and 34° 36′ E). This is the first ATES application carried out in Turkey. The peak cooling and heating loads of the building are 195 and 74 kW, respectively. The general objective of the system is to use the groundwater from the aquifer to cool down the condenser of the HVAC system and at the same time storing this waste heat in the aquifer. Cooling with groundwater at around 18 °C instead of utilizing outside summer air at 30–35 °C decreases consumption of electrical energy significantly. In addition, stored heat can be recovered when it is needed in winter. The HVAC system with ATES started operation in August 2001 in cooling mode with an average coefficient of performance (COP) of 4.18, which is almost 60% higher than a conventional system.
Keywords: Aquifer thermal energy storage; Air-conditioning; Energy conservation (search for similar items in EconPapers)
Date: 2004
References: View complete reference list from CitEc
Citations: View citations in EconPapers (16)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148104001211
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:29:y:2004:i:12:p:1991-1996
DOI: 10.1016/j.renene.2004.03.007
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().