Natural convective heat transfer in trapezoidal enclosure of box-type solar cooker
Subodh Kumar
Renewable Energy, 2004, vol. 29, issue 2, 211-222
Abstract:
This paper presents simple thermal analysis to evaluate the natural convective heat transfer coefficient, hc12 for a trapezoidal absorber plate-inner glass cover enclosure of a double-glazed box-type solar cooker. Several indoor simulation experiments in steady state conditions have been performed to measure the temperatures of absorber plate, inner and outer glass covers, ambient air, electrical input supply and wind speed. The experimental data has been correlated by an equation of the form, Nu = CRan. The values of the constants C and n, obtained by linear regression analysis are used to calculate the convective heat transfer coefficient. The heat transfer analysis predicts that hc12 varies from 4.84 to 6.23 W m−2 oC−1 for the absorber plate temperature from 54 to 141 oC. The results of hc12 are compared with those of rectangular enclosure for the same absorber-inner glass cover temperatures and gap spacing. The study reveals that the values of convective heat transfer coefficient and top heat loss coefficient for rectangular enclosure are lower by 31–35% and 7% respectively.
Keywords: Box-type solar cooker; Convective heat transfer coefficient; Trapezium enclosure; Top heat loss coefficient (search for similar items in EconPapers)
Date: 2004
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148103001939
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:29:y:2004:i:2:p:211-222
DOI: 10.1016/S0960-1481(03)00193-9
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().