Theory of wind-electric water pumping
M. Velasco,
O. Probst and
S. Acevedo
Renewable Energy, 2004, vol. 29, issue 6, 873-893
Abstract:
A proper understanding of the electrical and mechanical behavior of the system and its components is essential for the successful operation of a wind-electric pumping system. In the present article we present a formal theory of such a system, developing a framework for the determination of the steady-state operating point, as well as the study of its transient behavior, particularly at start-up. It is shown that the sufficient accumulation of kinetic energy in the wind turbine before connecting it to its load is critical for a successful start-up, even when the system has been designed to function at optimal steady-state conditions. A detailed discussion of the start-up process in terms of stored kinetic energy in the braking power provided by both the pump and the electrical system losses is given. The results of this analysis are believed to be useful both for the steady-state design of wind-electric pumping systems, as well as the optimization of control schemes and energy capture.
Keywords: Wind-electric water pumping; Steady state analysis; Transient behavior (search for similar items in EconPapers)
Date: 2004
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148103003070
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:29:y:2004:i:6:p:873-893
DOI: 10.1016/j.renene.2003.10.001
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().