EconPapers    
Economics at your fingertips  
 

An irreversible thermodynamic model for solar absorption refrigerator

R. Fathi, C. Guemimi and S. Ouaskit

Renewable Energy, 2004, vol. 29, issue 8, 1349-1365

Abstract: A solar refrigerator is made of a solar collector and a refrigeration system. Real solar refrigerators usually operate between two limits, maximum coefficient of performance (COP) and maximum cooling load. A new model is presented to describe an irreversible absorption refrigerator, in which not only the irreversibilities of heat conduction but also those resulting from friction, eddy and other irreversible effects inside the working fluid are considered. The influence of these irreversible effects on the performance of an absorption refrigerator with continuous flow is investigated. The analytical expressions of the optimal refrigeration coefficient and the cooling rate of the refrigerator are derived. The predictions of the model are compared with semi-empirical cycle model of single-stage absorption refrigeration machines. The results obtained here can describe the optimal performance of a four temperature level absorption refrigeration affected simultaneously by the internal and external irreversibilities and provide the theoretical bases for the optimal design and operation of real absorption refrigerators operating between four temperature levels.

Keywords: Absorption cycle; Solar refrigeration; COP (search for similar items in EconPapers)
Date: 2004
References: View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148103002829
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:29:y:2004:i:8:p:1349-1365

DOI: 10.1016/j.renene.2003.07.011

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:29:y:2004:i:8:p:1349-1365