Heat transfer dynamics in an inflatable-tunnel solar air heater
A. Flores-Irigollen,
J.L. Fernández,
E. Rubio-Cerda and
F.T. Poujol
Renewable Energy, 2004, vol. 29, issue 8, 1367-1382
Abstract:
A mathematical model that describes the dynamics of the heat transfer in an inflatable-tunnel solar collector for air heating is proposed and validated. The model is distributed-parameters, one-dimensional and unsteady-state. It considers the thermal inertia of a pebble bed acting as the absorber surface and is constituted by three equations that describe the temperature distributions of the three system components: polyethylene cover, transfer fluid (air) and absorber surface.
Keywords: Inflatable-tunnel; Mathematical model; Simulation; Numerical scheme; Validation; Solar air heater (search for similar items in EconPapers)
Date: 2004
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148103003616
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:29:y:2004:i:8:p:1367-1382
DOI: 10.1016/j.renene.2003.11.004
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().