EconPapers    
Economics at your fingertips  
 

Performance of a non-metallic unglazed solar water heater with integrated storage system

K. Sopian, M. Syahri, S. Abdullah, M.Y. Othman and B. Yatim

Renewable Energy, 2004, vol. 29, issue 9, 1421-1430

Abstract: The performance of a new design of non-metallic unglazed solar water heater integrated with a storage system has been studied. In this system, the collector and storage were installed in one unit. All parts of the system have been fabricated from fiberglass reinforced polyester (GFRP) using a special resin composition that provides good thermal conductivity and absorptivity. The storage tank has a capacity of 329 l. The design of the storage system was sandwich construction, with the core material made out of polyurethane foam, which combines stiffness and lightness of structure with very good thermal insulation. The width and length of the absorber plat were 1.4 and 1.8 m, respectively. The performance of the system has been investigated by two methods. In the first method, the storage tank was filled up with water the night before the test. The tank was then drained during the night, refilled and made ready for the next day’s test. The tests were repeated under varied environmental conditions for several days. The maximum water temperature in the storage tank of 63 °C has been achieved for a clear day operation at an average solar radiation level of 700 W m−2 and ambient temperature of 30 °C. The decrease of water temperature with and without the thermal diode is 10 and 20 °C, respectively. In the second method, the testing was of the same way, but in this case without draw-off or draining of the hot water from the storage tank. All data readings were recorded from sunrise to sunset over the same period. The temperature was recorded for several days and ranges of 60–63 °C were obtained in the storage tank. A system efficiency of 45% was achieved at an average solar radiation level of 635 W m−2 and ambient temperature of 31 °C.

Keywords: Fiberglass reinforced polyester (GFRP); Integrated storage system; Thermal diode (search for similar items in EconPapers)
Date: 2004
References: View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148104000138
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:29:y:2004:i:9:p:1421-1430

DOI: 10.1016/j.renene.2004.01.002

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:29:y:2004:i:9:p:1421-1430