EconPapers    
Economics at your fingertips  
 

A four-bed mass recovery adsorption refrigeration cycle driven by low temperature waste/renewable heat source

K.C.A. Alam, A. Akahira, Y. Hamamoto, A. Akisawa and T. Kashiwagi

Renewable Energy, 2004, vol. 29, issue 9, 1461-1475

Abstract: The study deals with an advanced four-bed mass recovery adsorption refrigeration cycle driven by low temperature heat source. The proposed cycle consists of two basic adsorption refrigeration cycle. The heat source rejected by one cycle is used to power the second cycle. Due to the cascading use of heat and cooling source, all major components of the system maintain different pressure levels. The proposed cycle utilize those pressure levels to enhance the refrigeration mass circulation that leads the system to perform better performances. The performance of the proposed cycle evaluated by the mathematical model at equilibrium condition and compared with the performance of the basic two-bed adsorption refrigeration cycle. It is seen that the cooling effect as well as COP of the proposed cycle is superior to those of the basic cycle. The performances of the cycle are also compared with those of the two-stage cycle. Results also show that though the cooling effect of the proposed cycle is lower than that of two-stage cycle for heat source temperature less than 70 °C, the COP of the cycle, however, is superior to that of two-stage cycle for heat source temperature greater than 60 °C.

Keywords: Adsorption refrigeration; Low temperature; Pressure; Mass recovery; Performance (search for similar items in EconPapers)
Date: 2004
References: View complete reference list from CitEc
Citations: View citations in EconPapers (14)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148104000400
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:29:y:2004:i:9:p:1461-1475

DOI: 10.1016/j.renene.2004.01.011

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:29:y:2004:i:9:p:1461-1475