An adaptive artificial neural network model for sizing stand-alone photovoltaic systems: application for isolated sites in Algeria
A. Mellit,
M. Benghanem,
A. Hadj Arab and
A. Guessoum
Renewable Energy, 2005, vol. 30, issue 10, 1501-1524
Abstract:
In this paper we investigate, the possibility of using an adaptive Artificial Neural Network (ANN), in order to find a suitable model for sizing Stand-Alone Photovoltaic (SAPV) systems, based on a minimum of input data. The model combines Radial Basis Function (RBF) network and Infinite Impulse Response (IIR) filter in order to accelerate the convergence of the network. For the sizing of a photovoltaic (PV) systems, we need to determine the optimal sizing coefficients (KPV, KB). These coefficients allow us to determine the number of solar panels and storage batteries necessary to satisfy a given consumption, especially in isolated sites where the global solar radiation data is not always available. These coefficients are considered the most important parameters for sizing a PV system. Results obtained by classical models (analytical, numerical, analytical-numerical, B-spline function) and new models like feed-forward (MLP), radial basis function (RBF), MLP-IIR and RBF-IIR are compared with experimental sizing coefficients in order to illustrate the accuracy of the new developed model. This model has been trained by using 200 known optimal sizing coefficients corresponding to 200 locations in Algeria. In this way, the adaptive model was trained to accept and handle a number of unusual cases. The unknown validation sizing coefficients set produced very accurate estimation with a correlation coefficient of 98%. This result indicates that the proposed method can be successfully used for the estimation of optimal sizing coefficients of SAPV systems for any locations in Algeria. The methodology proposed in this paper however, can be generalized using different locations of the world.
Keywords: Stand-alone PV system; Sizing; Artificial neural network; Radial basis function; Modeling (search for similar items in EconPapers)
Date: 2005
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (26)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096014810400429X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:30:y:2005:i:10:p:1501-1524
DOI: 10.1016/j.renene.2004.11.012
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().