EconPapers    
Economics at your fingertips  
 

Computational analysis of performance and flow investigation on wells turbine for wave energy conversion

T.S. Dhanasekaran and M. Govardhan

Renewable Energy, 2005, vol. 30, issue 14, 2129-2147

Abstract: Wells turbine is a self-rectifying airflow turbine capable of converting pneumatic power of the periodically reversing air stream in oscillating water column into mechanical energy. This paper reports the computational analysis on performance and aerodynamics of Wells turbine with the NACA 0021 constant chord blades. Studies have been made at various flow coefficients covering the entire range of flow coefficients over which the turbine is operable. The present computational model can predict the performance and aerodynamics of the turbine quantitatively and qualitatively. The model also predicted the flow coefficient at which the turbine stalls, with reasonable accuracy.

Keywords: CFD; Wells turbine; Wave energy conversion; Turbomachinery (search for similar items in EconPapers)
Date: 2005
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148105000431
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:30:y:2005:i:14:p:2129-2147

DOI: 10.1016/j.renene.2005.02.005

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:30:y:2005:i:14:p:2129-2147