Upper bounds for solar thermophotovoltaic efficiency
Viorel Badescu
Renewable Energy, 2005, vol. 30, issue 2, 211-225
Abstract:
The main components of thermophotovoltaic (TPV) devices are the primary lens (or mirror), the absorber, the PV cell, and a photon recuperator system. A theory integrating all these components is used in this paper to analyse a particular type of TPV device (plane disk absorber and PV cell). The TPV efficiency is maximized by using three optimization parameters, namely absorber, PV cell temperatures, and cell voltage. Almost ideal operation conditions are envisaged and upper bounds are obtained for the TPV efficiency. They are strongly dependent on PV cell bandgap and radiation concentration. Preliminary results suggest the existence of an optimum solar radiation concentration ratio. The improvement in thermal design quality allows the usage of PV cells based on wide bandgap semiconductors.
Keywords: Photovoltaics; Thermophotovoltaics; Non-equilibrium thermodynamics; Radiative heat transfer (search for similar items in EconPapers)
Date: 2005
References: View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148104001818
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:30:y:2005:i:2:p:211-225
DOI: 10.1016/j.renene.2004.04.012
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().