EconPapers    
Economics at your fingertips  
 

A classification mechanism for determining average wind speed and power in several regions of Turkey using artificial neural networks

Ertugrul Çam, Erol Arcaklıoğlu, Abdullah Çavuşoğlu and Bilge Akbıyık

Renewable Energy, 2005, vol. 30, issue 2, 227-239

Abstract: In this paper, average wind speed and wind power values are estimated using artificial neural networks (ANNs) in seven regions of Turkey. To start with, a network has been set up, and trained with the data set obtained from several stations—each station gather data from five different heights—from each region, one randomly selected height value of a station has been used as test data. Wind data readings corresponding to the last 50 years of relevant regions were obtained from the Turkish State Meteorological Service (TSMS). The software has been developed under Matlab 6.0. In the input layer, longitude, latitude, altitude, and height are used, while wind speeds and related power values correspond to output layer. Then we have used the networks to make predictions for varying heights, which are not incorporated to the system at the training stage. The network has successfully predicted the required output values for the test data and the mean error levels for regions differed between 3% and 6%. We believe that using ANNs average wind speed and wind power of a region can be predicted provided with lesser amount of sampling data, that the sampling mechanism is reliable and adequate.

Keywords: Wind speed predictions; Artificial neural networks; Turkey (search for similar items in EconPapers)
Date: 2005
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148104001879
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:30:y:2005:i:2:p:227-239

DOI: 10.1016/j.renene.2004.05.008

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:30:y:2005:i:2:p:227-239