EconPapers    
Economics at your fingertips  
 

Study and optimization of the thermal performances of the offset rectangular plate fin absorber plates, with various glazing

S. Youcef-Ali

Renewable Energy, 2005, vol. 30, issue 2, 271-280

Abstract: The low thermophysical characteristics of air used as a heat transfer fluid in the solar collectors with thermal conversion require a fully developed turbulent flow. This increases the thermal heat transfer between the absorber plate and the fluid, which clearly improves the thermal performances of the solar collector with obstacles arranged into the air channel duct. In the present work, we introduce, in solar collector, the offset rectangular plate fins, which are used in heat exchangers. An experimental investigation carried out showed the generated enhancement of thermal performance. The offset rectangular plate fins, mounted in staggered pattern, are oriented parallel to the fluid flow and are soldered to the underside of absorber plate. They are characterized by high heat transfer area per unit volume. High thermal performances are obtained with low pressure losses and in consequence a low electrical power consumption by the fan in comparison to the flat plate collector. The experimental results are all so compared by using two types of transparent cover; double and triple.

Keywords: Efficiency factor; Heat transfer; Offset rectangular plate fin; Solar air collector (search for similar items in EconPapers)
Date: 2005
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148104001740
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:30:y:2005:i:2:p:271-280

DOI: 10.1016/j.renene.2004.04.009

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:30:y:2005:i:2:p:271-280