Energy savings of office buildings by the use of semi-transparent solar cells for windows
T. Miyazaki,
A. Akisawa and
T. Kashiwagi
Renewable Energy, 2005, vol. 30, issue 3, 281-304
Abstract:
The study investigated a PV window that consists of a double glazed window with semi-transparent solar cells. The window provides natural light transmission as well as electricity production. The effect of the PV window on energy consumption of office buildings was analyzed in terms of heating and cooling loads, daylighting, and electricity production. The purposes of the study were to find the optimum solar cell transmittance and window to wall ratio (WWR), and to estimate energy savings of the building. A standard floor of an office building was modeled to run computer simulation, and annual energy simulation was performed with EnergyPlus. The results showed that the solar cell transmittance of 40% and WWR of 50% achieved the minimum electricity consumption in the building when artificial lighting was controlled with daylighting. The optimum solar cell transmittance for PV windows in different orientation was also presented. By using the optimum PV window, the electricity consumption was reduced by 55% compared to the single glazed window with WWR of 30% and no lighting control.
Keywords: Energy simulation; Office buildings; Windows; Semi-transparent photovoltaics; Daylighting (search for similar items in EconPapers)
Date: 2005
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (59)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148104002216
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:30:y:2005:i:3:p:281-304
DOI: 10.1016/j.renene.2004.05.010
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().