MEP-type distribution function: a better alternative to Weibull function for wind speed distributions
Meishen Li and
Xianguo Li
Renewable Energy, 2005, vol. 30, issue 8, 1221-1240
Abstract:
The probabilistic distribution of wind speed is one of the important wind characteristics for the assessment of wind energy potential and for the performance of wind energy conversion systems, as well as for the structural and environmental design and analysis. In this study, an exponential family of distribution functions has been developed for the description of the probabilistic distribution of wind speed, and comparison with the wind speed data taken from different sources and measured at different geographical locations in the world has been made. This family of distributions is developed by introducing a pre-exponential term to the theoretical distribution derived from the maximum entropy principle (MEP). The statistical analysis parameter based on the wind power density is used as the suitability judgement for the distribution functions. It is shown that the MEP-type distributions not only agree better with a variety of the measured wind speed data than the conventionally used empirical Weibull distribution, but also can represent the wind power density much more accurately. Therefore, the MEP-type distributions are more suitable for the assessment of the wind energy potential and the performance of wind energy conversion systems.
Keywords: Wind speed distribution; Maximum entropy principle; Weibull distribution; Wind energy (search for similar items in EconPapers)
Date: 2005
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148104004033
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:30:y:2005:i:8:p:1221-1240
DOI: 10.1016/j.renene.2004.10.003
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().