Empirical correlations to predict the performance of the dehumidifier using liquid desiccant in heat and mass transfer
X.H. Liu,
K.Y. Qu and
Y. Jiang
Renewable Energy, 2006, vol. 31, issue 10, 1627-1639
Abstract:
Dehumidifier is one of the essential components in liquid desiccant air-conditioning system, whose hourly performance is required to predict the annual energy consumption of the system. Model complexity and the required amount of computer time usually do not permit the use of models based on a differential element. In order to estimate the hour-by-hour performance of dehumidifier, a simplified approach is proposed in the present study, in which enthalpy and moisture effectiveness are adopted as indexes to describe the heat and mass transfer performances of the dehumidifier. Empirical correlations of enthalpy and moisture effectiveness are expressed by enthalpy difference, moisture difference, air and desiccant flow rate, based on corresponding experimental results. Empirical correlations are given for a cross-flow packed dehumidifier, the average absolute differences between the calculated values and the experimental findings are 6.3% and 6.0% for enthalpy effectiveness and moisture effectiveness, respectively, with discrepancies mainly within ±20%. Good agreements are also shown for counter-flow dehumidifiers available in literatures.
Keywords: Liquid desiccant; Dehumidifier; Enthalpy effectiveness; Moisture effectiveness; Empirical correlation (search for similar items in EconPapers)
Date: 2006
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (20)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148105002557
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:31:y:2006:i:10:p:1627-1639
DOI: 10.1016/j.renene.2005.08.029
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().