Thermodynamic analysis of absorption systems using artificial neural network
Arzu Şencan,
Kemal A. Yakut and
Soteris A. Kalogirou
Renewable Energy, 2006, vol. 31, issue 1, 29-43
Abstract:
Thermodynamic analysis of absorption systems is a very complex process, mainly because of the limited experimental data and analytical functions required for calculating the thermodynamic properties of fluid pairs, which usually involves the solution of complex differential equations. In order to simplify this complex process, Artificial Neural Networks (ANNs) are used. In this study, ANNs are used as a new approach for the determination of the thermodynamic properties of LiBr–water and LiCl–water solutions which have been the most widely used in the absorption heat pump systems. Instead of complex differential equations and limited experimental data, faster and simpler solutions were obtained by using equations derived from the ANN model. It was found that the coefficient of multiple determination (R2-value) between the actual and ANN predicted data is equal to about 0.999 for the enthalpy of both LiBr–water and LiCl–water solutions. As seen from the results obtained, the calculated thermodynamic properties are obviously within acceptable limits. In addition, the coefficient of performance (COP) of absorption systems operating under different conditions with LiBr–water and LiCl–water solutions is calculated. The use of the derived equations, which can be employed with any programming language or spreadsheet program for the estimation of the enthalpy of the solutions, as described in this paper, may make the use of dedicated ANN software unnecessary.
Keywords: Artificial neural network; Absorption heat pump; Lithium bromide–water; Lithium chloride–water; Thermodynamic properties (search for similar items in EconPapers)
Date: 2006
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148105000753
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:31:y:2006:i:1:p:29-43
DOI: 10.1016/j.renene.2005.03.011
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().