Distributed control system for frequency control in a isolated wind system
R. Sebastián and
J. Quesada
Renewable Energy, 2006, vol. 31, issue 3, 285-305
Abstract:
High wind penetration wind diesel hybrid systems (WDHS) have three modes of operation: diesel only (DO), wind diesel (WD) and wind only (WO). The control requirements for frequency control in WO mode are analysed and a distributed control system (DCS) is proposed for this frequency control, describing the actuation of its sensor and actuator nodes. A power system for WO mode consisting of a wind turbine generator (WTG), a synchronous machine (SM), the consumer load, a battery based energy storage system (ESS) and a discrete dump load (DL) along with the associated DCS have been simulated. By means of a 400Hz reference power message that establishes the active power necessary for frequency regulation and a prescribed active power sharing between the ESS and DL actuators, graphs for frequency, voltage and active powers for consumer load and wind speed changes are presented. The results of the simulation show maximum settling times and frequency per unit variation of 1.5s and 0.16% respectively, for the previous input changes. The DCS solution presented could constitute a proposal for the standardization of the control for WO mode in high wind penetration WDHS which rely on a SM to generate the voltage waveform in that mode.
Keywords: Wind diesel; Energy storage systems; Distributed control systems (search for similar items in EconPapers)
Date: 2006
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148105000819
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:31:y:2006:i:3:p:285-305
DOI: 10.1016/j.renene.2005.04.003
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().