EconPapers    
Economics at your fingertips  
 

A study on stall-delay for horizontal axis wind turbine

Danmei Hu, Ouyang Hua and Zhaohui Du

Renewable Energy, 2006, vol. 31, issue 6, 821-836

Abstract: The study on the stall-delay phenomenon for horizontal axis wind turbine (HAWT) was carried out by employing the boundary layer analysis, the numerical simulation and the experimental measurement. The effects of rotation on blade boundary layers are investigated by solving the 3D integral boundary layer equations with assumed velocity profiles. It is shown that rotation has a generally beneficial effect in delaying separation compared with that under 2D stationary condition. Next, the detailed flow fields are simulated on the conditions of 2D stationary and 3D rotation by CFD code. The computation results show that rotation affects the pressure distribution on the surface of the foil, which can give rise to 3D stall-delay in stalled condition HAWT. Finally, the flow fields behind a model HAWT are measured with a hot-wire probe in the wind tunnel. The results show good agreement with those from 3D computation calculations, suggesting that the stall-delay should be taken into consideration, in order to accurately predict the loading and performance of a HAWT operating in stall.

Keywords: Stall-delay; Numerical simulation; Flow field measurement; Horizontal axis wind turbine (search for similar items in EconPapers)
Date: 2006
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148105001199
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:31:y:2006:i:6:p:821-836

DOI: 10.1016/j.renene.2005.05.002

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:31:y:2006:i:6:p:821-836