Characteristics of a highly efficient propeller type small wind turbine with a diffuser
Toshio Matsushima,
Shinya Takagi and
Seiichi Muroyama
Renewable Energy, 2006, vol. 31, issue 9, 1343-1354
Abstract:
We studied the improved effects a diffuser had on the output power of small wind turbine systems, aiming to introduce these systems to radio relay stations as an independent power supply system. A frustum-shaped diffuser was chosen from an economical standpoint and wind speed distribution. The effect the diffuser's shape had on the wind speed was analyzed by simulation and showed that the wind speed in the diffuser was greatly influenced by the length and expansion angle of the diffuser, and maximum wind speed increased 1.7 times with the selection of the appropriate diffuser shape. The wind speed in the diffuser was fastest near the diffuser's entrance. We conducted field tests using a real examination device with a diffuser and confirmed that the output power of the wind power generator increased by up to 2.4 times compared to that of a conventional turbine. Moreover, it was confirmed that the diffuser was especially useful where the wind direction was constant.
Keywords: Wind turbine; Diffuser; Wind speed; Output power; Energy production (search for similar items in EconPapers)
Date: 2006
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148105002144
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:31:y:2006:i:9:p:1343-1354
DOI: 10.1016/j.renene.2005.07.008
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().