Theoretical investigation of flame propagation process in an SI engine running on gasoline–ethanol blends
Hakan Bayraktar
Renewable Energy, 2007, vol. 32, issue 5, 758-771
Abstract:
Turbulent flame propagation process in a spark-ignition (SI) engine is theoretically investigated. Fueling with gasoline, ethanol and different gasoline–ethanol blends is considered. A quasi-dimensional SI engine cycle model previously developed by the author is used to predict the thermodynamic state of the cylinder charge during the cycle. The flame is assumed to be spherical in shape and centered at the spark plug. Computations are carried out for an automobile SI engine having a disc-shaped combustion chamber, for which the compression ratio and the nominal speed are 9.2 and 5800rpm, respectively. Geometrical features (flame radius, flame front area and enflamed volume) of the flame, combustion characteristics (mass fraction burned and burn duration), and cylinder pressure and temperature are predicted as a function of the crank angle. Three different positions of the crank angle are studied: −10°, TC and +10°. It was concluded that ethanol addition to gasoline up to 25vol% accelerated the flame propagation process.
Keywords: Faster burning; Spherical flame; Gasoline–ethanol blends (search for similar items in EconPapers)
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096014810600084X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:32:y:2007:i:5:p:758-771
DOI: 10.1016/j.renene.2006.03.017
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().