EconPapers    
Economics at your fingertips  
 

Effect of ambient conditions on the first and second law performance of an open desiccant cooling process

Mehmet Kanoğlu, Ali Bolattürk and Necdet Altuntop

Renewable Energy, 2007, vol. 32, issue 6, 931-946

Abstract: An open desiccant cooling process is presented and applied to ventilation and recirculation modes of the system operation. The cooling system consists of a desiccant wheel, a rotary regenerator, two evaporative coolers, and a heating unit. Certain ideal operating characteristics based primarily on the first law of thermodynamics are assumed for each component. The system with indoor and outdoor ARI conditions has a thermal coefficient of performance (COP) of 1.17 in ventilation mode and 1.28 in recirculation mode. A second law analysis is also performed and at ARI conditions, the reversible COP of the system is determined to be 2.63 in ventilation mode and 3.04 in recirculation mode. Variation of the first and second law based COP terms and cooling load with respect to ambient temperature and relative humidity are investigated in both modes of the system operation. The results of the analysis provide an upper limit for the system performance at various ambient conditions and may serve as a model to which actual desiccant cooling systems may be compared. As an additional study, a non-ideal system operation is considered and it is determined that both the COP and cooling load decrease with increasing ambient temperature and relative humidity, and they approach zero at high values of ambient temperature and humidity.

Keywords: Desiccant; Cooling; Refrigeration; Air-conditioning; Second-law analysis (search for similar items in EconPapers)
Date: 2007
References: View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148106000929
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:32:y:2007:i:6:p:931-946

DOI: 10.1016/j.renene.2006.04.001

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:32:y:2007:i:6:p:931-946